



1

2

3

Balancing Use and Protection Integrated Water Resources Management (IWRM) We all live downstream Resource Management Source Control Setting requirements in water resources — WR Class Class Resource requirements: Setting the Reserve Resource requirements: Resource requirements: Resource requirements: Resource requirements: Resource requirements: Resource requirements: Resource requirements:

Δ

6

STUDY OBJECTIVE

- The main objectives of the study are to determine

 (i) the Water Resource Classes (current phase)
 (ii) the Reserve (completed gazette template next)
 (iii) associated Resource Quality Objectives (RQOs) (this phase)
- · All water resources and linkages
- Consultative processes ensure the successful determination of the Water Resource Classes, Reserve and RQOs

Purpose is to establish clear goals relating to the quality of the relevant water resources; provide limits or boundaries for the sustainable use of water resources

In determining ROOs, a balance must be sought between the need to protect and sustain water resource and the need to use them class of the resource

Binding on all authorities and institutions

The ROOs may inform decision-making relating to the use of the water in a specific water resource.

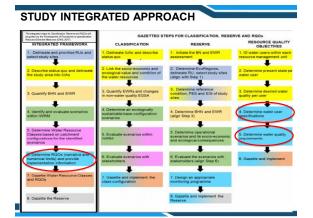
WATER IS LIFE - SANITATION IS DIGNITY

WATER IS LIFE - SANITATION IS DIGNITY

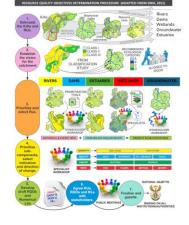
5

RESOURCE QUALITY OBJECTIVES

- · RQOs closely aligned with Sustainable Development Goals (SDG)
- Aims to ensure the availability and sustainable management of water and sanitation for all


The alignment can be summarised as follows:

- Water Quality (SDG 6.3): Sets benchmarks to reduce pollution, manage chemicals, and reuse treated wastewater.
- Water Quantity (SDG 6.4): Supports sustainable withdrawals and prevents water scarcity.
- **Ecosystem Protection (SDG 6.6):** Safeguards and restores aquatic ecosystems.
- Integrated Management (SDG 6.5): Central to Integrated Water Resource Management (IWR)
- Monitoring & Accountability (SDG 6.1, 6.2, 6.a): Provides measurable targets to enhance governance ensure equitable access.



8

9

Criteria for setting Resource Quality Objectives

SMART

· Simple, easily measured, understood, applied

· At appropriate scale and must detect change · Comparable, repeatable, defensible

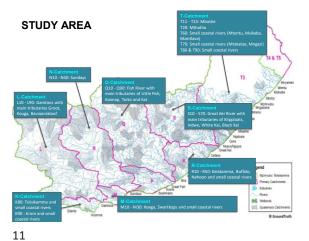
· Use existing information where possible

· May be drivers or response indicators

· Narrative and/or numeric

RQOs cannot/do not:

· Meaningful in terms of the Act

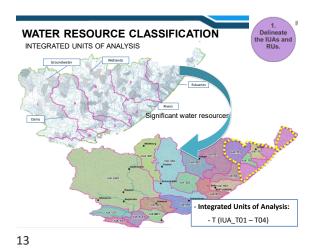

· Be applied to an individual licence

· Be considered as absolute "truths"

WATER IS LIFE - SANITATION IS DIGN

· Replace the need for other monitoring programmes · Include every available indicator of resource q

10



STUDY APPROACH: ALL WATER RESOURCES

WATER IS LIFE - SANITATION IS DIGNITY

12

WATER RESOURCE CLASSES

15

PRIORITY RESOURCE UNITS: RIVERS AND DAMS

- · Position of RU within IUA
- · Importance of each RU to users
- · Level of threat posed to the water resource quantity and quality for users and ecology (resource stress)
 - High utilisation
 - Compromised water quality; and/or
 - Future water resource developments which are planned
- · Present Ecological State, Ecological importance/ sensitivity
- · Strategic Water Resource Areas
- Freshwater Ecosystem Priority Area (upstream/within)
- Conservation sensitivities (specifically conservation targets set by the
- Flagship and/or free flowing rivers (NB for ecosystem processes/ biodiversity value)

VATER IS LIFE - SANITATION IS DI

16

18

Fish support areas, fish sanctuaries, fish corridors with IUCN red listed fish species

PRIORITY RESOURCE UNITS: RIVERS AND DAMS

Alien vegetation infestation was assessed and considered if a

Sensitive aquatic macroinvertebrates (water quality, flow, habitat)

- If any priority wetlands or groundwater areas, contributing to baseflows of rivers
- Social-Cultural Importance
- Management considerations
- Practical considerations
- Major dams

problem

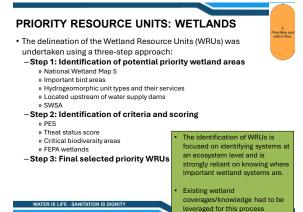
· Threatened or sensitive vegetation ecosystems

- Prioritise linear stretches of rivers Requiring different EWRs, due to different flow patterns
- Reaction of habitat and biota to stress
 - Require different management and operational structures

17

19

PRIORITY RESOURCE UNITS: ESTUARIES

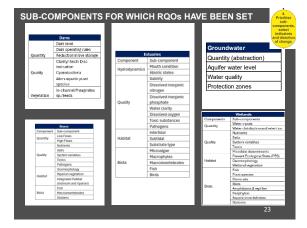

- Estuaries is a single RU based on the Estuarine Functional Zone (previously done national scale by van Niekerk et al. 2019)
- · Water resource importance (use/quality)
- · High ecological importance (resource is currently/future stressed)
- Previous assessments
- · Further considerations/inclusions:
 - High Ecological Category: A, A/B or B (High EC);
 - · Critically endangered fish species
 - · Carbon sequestration (mangrove, salt marsh & seagrass)
 - · Nursery areas
 - · Critically endangered species (other)

WATER IS LIFE - SANITATION IS DIGNITY

PRIORITY RESOURCE UNITS: GROUNDWATER

- Groundwater use (WARMS, NGA, density)
- · Strategic GW Areas (SW, GW, SW-GW)
- · Groundwater Dependency
- Stress Index
- · Government Control Areas
- · Water Quality
- · Baseflow Component (new)
- · Above based on average weighting, with sub categories applying
- · The GWRU delineation based on aquifer type and other physical, management and/or functional criteria
- · Quaternary catchment forms basis of basic resource unit
- · % Score per quaternary developed and final priority based on a scalable ranking system
- GWRU was assigned the highest quaternary priority score listed

21


- · Components sub-components indicators: for setting the RQOs · Based on:
 - · Activities that impact on water resources
 - User requirements

20

· Protection of the resource

22

23

SETTING OF RESOURCE QUALITY OBJECTIVES

· Approach:

- · Data retrieved from all in-field assessments for this study Intermediate: RQOs for all indicators (high confidences)
- Rapid 3: ROOs for all indicators (high confidences), except geomorphology
- and riparian vegetation (IHI as surrogate)
- Field verification: used RQO evaluation tool to identify sub-components
 - Rivers: REMP Data (inverts and fish)
 - · Other previous EWR studies
- · Water quality:
 - Limited and porous data
 - DWS, 2008 setting RQOs for water quality for Reserves in accordance to the ecological category for water quality
 - Inferred from diatoms and macroinvertebrates (both respond to WQ changes)
 - Health risk guidelines or ROOs for faecal coliforms/Escherichia coli (as used by the National Microbial Monitoring Programme (NMMP) of South Africa (DWAF, 2002)): where sites located directly downstream and close proximity to WWTW - the more stricter categories were applied

WATER IS LIFE - SANITATION IS DIGNITY

SETTING OF RESOURCE QUALITY OBJECTIVES

Estuaries Approach:

- Data retrieved from all in-field assessments for this study
 - Priority estuaries: RQOs for all indicators (high confidences)
 - Other estuaries:
 - · NBA, 2018, plus revisions (PES study)
- Other studies

Groundwater

- Approach:
 - Data retrieved from all in-field assessments for this study Priority groundwater:
 - - RQOs for indicators (high confidences)
 - Abstraction Rates, water levels, COCs
 - Water Levels Hvdstra
 - Chemistry WMS + Other (Municipal, NGA etc)

Wetlands

Approach:

25

- Data retrieved from all in-field assessments for this study
- RQOs only set for priority wetlands for all indicators

WATER IS LIFE - SANITATION IS DIGNITY

26

30

RESOURCE QUALITY OBJECTIVES: IUA_T01 Class II Legend Leg

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

Gw_ru40

Gw_ru41

Gw_ru42

Hydata Site
WATER IS

WATER IS

Gillenders

RU PRIORITISATION - ALL WATER RESOURCES

IUA No.	IUA Code	River	Dams	Estuaries	Groundwater	Wetlands
16	IUA_T01	(X	X		
17	IUA_T02	S	X	S	X	X
18	IUA_T03	S		S		X
19	IUA_T04	S	X			S

WATER IS LIFE - SANITATION IS DIGNITY

27

RESOURCE QUALITY OBJECTIVES: RIVERS

										Con	ipone	ent					
					Qua	ntity		-	Qualit	y		- 1	Habita	t	E	Biota	
RU No.	SQ Reach	Quat	River	Rationale	Low Flows	High Flows	Nutrients	Salts	System variables	Toxics	Pathogens	Geomorphology	Riparian vegetation	Ξ	Fish	macroinvertebr	Diatoms
16.1	T11A-06296	T11A	Slang	Water quality. Priority wetland RQOs will take preference, as same quaternary catchment (T11A)				х	x	х	x						
16.2	T11A-06376	T11A	KuKowa	No data to set RQOs				х	х	х	х						Γ
16.3	T11A-06467	T11A	Ntungwana	No data to set RQOs				х	х	Х	Х						Γ
16.4	T11H-06654	T11H	Mbhashe	All indicators . EWR site MBHA02_R	х	х	х	х	х	х	х			х	х	х	>
16.6	T20A-06339	T20A	Mthatha	No data to set RQOs				Х	х	х	х		П				Γ

16.4: Mbashe

WATER IS LIFE - SANITATION IS DIGNITY

29

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

	QUAT		GWuse (WARMS)	Strat GW are as	GW Dependency		Govt Control Areas	GW Quality- (EC)	Eco reliance on GW (Baseflow)	Overall score (total 35)		Priority (1-3)	Upgrade
	T11A		1	1	2	1	1	5	3	14	40.0	2	
	T11C		1	5	1	1	1	4	4	17	48.6	1	У
	T11D		1	4	2	1	1	5	4	18	51.4	1	У
	T11E	Gw_ru40	1	5	2	1	1	5	4	19	54.3	1	у
	T11F		1	5	2	1	1	5	4	19	54.3	1	у
	T11G		2	3	2	1	1	5	3	17	48.6	2	
	T11H		1	1	2	1	1	5	3	14	40.0	2	
IUA_T01	T12A		1	2	2	1	1	5	4	16	45.7	2	
104_101	T12B		2	1	2	1	1	5	3	15	42.9	2	
	T12C	Gw_ru41	1	1	2	1	1	5	3	14	40.0	2	
	T12D		1	1	2	1	1	3	3	12	34.3	2	
	T12E		1	1	2	1	1	4	3	13	37.1	2	
	T20A	Gw_ru42	1	5	2	1	1	5	5	20	57.1	1	
	T11B		1	3	1	1	1	5	3	15	42.9	2	
	T12F		1	1	1	1	1	3	3	11	31.4	2	
	T12G		1	1	1	1	1	3	3	11	31.4	2	

WATER IS LIFE - SANITATION IS DIGNITY

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA T01 - GWRU40

at.	CHIRU	DAKE	Companyet	100	Indicator/Heasare	Numeric Limit
M_TOL		TiiC TiiD TiiE			Water Balance	Q < Average recharge per hectane Q < susstainable yield determined by yield test
		T11F T11G T11H			Recharge estimate Reserve determination Delineation of smaller sub regions	-
				Water Level in borehole not to exceed CD Medium to long term (1 to 5 years) water level trends (based on drawdown) must show recovery	Groundwater levels at active monitoring boreholes using Groundwater Monitoring Guidelines Time series water levels - Monthly	Active monitoring site available: 3 No Peak drawdown in abstraction borehole critical depth Regional peak groundwater drawdown < 14 Im Regional LT groundwater drawdown < 76th percentile of 12 1 m
				other protection zone (U)	Radius of influence (r), r = 1.5°√(1°05), T=Transmissivity(n²/d), t=Time(days), S=Storativity I, = (1°1)/R, T=Transmissivity(m2/d), i=Groundwater Gradient, R=Becharge(mid)	Determine from yield test data $c < L\left(m \right)$
			Quality		COL Three sories water quality (Quarterly / Bi annual()	Active monotoning dive prolitable 2014 Mark wastl of wastle monotoning bis-relate Long birn found of 78th percential (mg/l) for COCs; COC COCS COC COCS COC COCS COC COCS Monotoning Monoton
				Protection zone from microbial pollution	Microbial rastius (r), r = 2(0.28*T) + 53	r<1,(m)
			Ecological	Protection zone for watercourse is required to	L = (11)/R, T=Transmissiologin 2/0), i=Groundwater Gradient, R=Rechargo(mid) Time series water levels - Monthly Abstruction rates - Monthly	Duttermine from yield floit duta $r < L(m)$

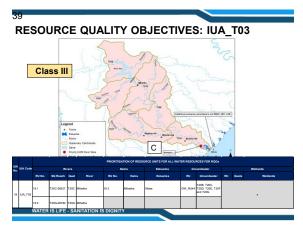
32

34

١	IUA						PRIORITISA	TION OF RESOL	JRCE UNITS FOR ALL WAT	ER RESOU	RCES FOR RQOs		
	No.	IUA Code		Ri	recs		Da	ms	Estuarios	Gn	oundwater		Wetlands
			RU No.	SQ Reach	Quat	River	RU No.	Dams	Estuaries		Groundwater	Quats	Wetlands
ſ	17	IUA_T02	17.1	T 13E-07090	T13E	Mohashe		x	Mbashe		х		x

WATER IS LIFE - SANITATION IS DIGNITY

35


RESOURCE QUALITY OBJECTIVES: RIVERS

RUN 50 Reach Quat River Rationab Guarding Service Service

17.1: Mbashe Lower

WATER IS LIFE - SANITATION IS DIGNITY

36

40 RESOURCE QUALITY OBJECTIVES: RIVERS AND DAMS

					Quantity		Qua	ility	Vege	tation
	IUA	RU No.	Dams		System (dam) operating rules	Reduction in live storage	Clarity/ Secchi Disc Indication	Cyanobacteria	Alien aquatic plant species	In-channel Phragmites sp./reeds
IUV	_T03	18.3	Mthatha Dam	X	X	X	X			X

18.1: Mthatha 18.3: Mthatha Dam

WATER IS LIFE - SANITATION IS DIGNITY

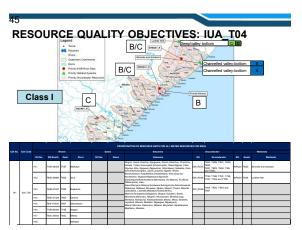
40

42

41

RESOURCE QUALITY OBJECTIVES: GROUNDWATER IUA_T03 IUA Prioritised GWRU Hydstra Site WMS Site

RESOURCE QUALITY OBJECTIVES: GROUNDWATER


IUA	QUAT	GRU	GWuse (WARMS)	Strat GW areas	GW Dependency	Stress	Govt Control Areas	GW Quality - (EC)	Eco reliance on GW (Baseflow)	Overall score (total 35)	% score	Priority (1-3)	Upgrade
	T208		1	5	2	1	1	5	5	20	57.1	1	у
	T20C		1	1	2	1	1	3	4	13	37.1	2	
IUA T03	T200	Gw ru44	3	1	2	1	1	3	4	15	42.9	1	у
104_103	T20E	UW_1044	1	1	2	1	1	5	4	15	42.9	2	
	T20F		1	1	2	1	1	5	4	15	42.9	1	у
	T20G		1	2	1	1	1	4	4	14	40.0	2	

WATER IS LIFE - SANITATION IS DIGNIT

43

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

JUNE	Quate	Composent	RQO	Indicator/Messare	Namente Cireit
hw_mp44	T200 T200 T200	Quantity and Aquifer	For water use applications higher than requirements for Reserve, Schedule Land General. Authorizations, abstraction rates should not exceed the average recharge values of the aquiter.	Abstraction rates - Monthly Water Belance	Q < Average recharge per horture Q < sustainable yield determined by yield test
	T20F T20G		For large abstractions, or stressed catchments, increased level of assessment required; Desktop, Rapid, intermediate, Comprehensive.	Recharge estimate Reserve determination Delineation of amelies sub-regions	
			Water Level in borehole notto exceed CD Modkum to long term (1 to 5 years) water level trends (based on drawdown) must show recovery	Groundwater levels at a citive manifolding bareholes using Groundwater Manifolding Guidelines. Time aeries water leads - Manifoly.	Active monitoring site available: 4 No Peak drawdown in abstraction barehole < cridical depth Regional peak groundwater drawdown < 53m Regional LT groundwater drawdown < 75th percentile of 6.2 n
			The radius of influence should not intersect any other protection zone (L)	Radius of influence (r) . $r = 1.5^{-\sqrt{1}} T^{-\sqrt{2}} S_1$. $T = Transmissivity (m^2/d)$, $t = Time(days)$, $S = Storativity$ $L = (T^+)/R$, $T = Transmissivity (m2/d)$, $t = Groundwater$ Gradient, $R = Recharge(m/d)$	Determine from yield test data $e \leq L_{i}(m)$
		Quality	Preserve existing what quality Modulum Into (green Clas Sysans) water quality must not exceed 79th percentile of monitoring data ground	OOCs Etime orders wake quality (Quarterly/ Bi Annual)	Active recentitioning site available. 15 No. New York Season Community monotoning boundard Long term toward *7566 per services (mg/H) for COCiq. 20 200 LC 1522 LC 1522 Fig. 40,622 NOSMOQ 4,17 He + 0,0005 NO4 + 0,0005 NO5 + 0,0005 N
			Protection zone from microbial pollution	Microbial radius (r), r = 2(0.28*1) +53	r < L(m)
		Ecological	Groundwater flow reversal to be prevented near water courses Protection zone for watercourse is required to protect the ecological reserve	L=(T*0/RLT=Transmissivity(m2/d), i=Groundwater Gradient, R=Recharge(nv/d) Time series mater levids - Monthly Abstraction rates - Monthly	Determine from yield test data $\label{eq:constraint} e^{\pm}L_{i}(m)$

46

RESOURCE QUALITY OBJECTIVES: RIVERS

										Co	npon	ent					
					Qua	ntity			Quality			-	Habita			Biota	
RU N	SQ Reach	Quat	River	Rationale	Low Flows	High Flows	Nutrients	Salts	System variables	Toxics	Pathogens	Geomorphology	Riparian vegetation	H	Fish	Aquatic macroinvertebrate	Diatoms
19.1	T70E-06459	T70E	Mtakatye	Selected according to the RU evaluation tool	Х	Х											
19.2	T80D-06960	T80D	Xora	No date o set RQOs			Х	Х	Х	Х	Х						
19.3	T90B-07242	T90B	Ngabarha	All indicators. NQAB01_R	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х
19.4	T90D-07329	T90D	Qhorha	No dete o set RQOs			Х	Х	Х	Х	Х						
19.5	T90F-07544	T90F	Sihlontiweni	No date o set RQOs			Х	Х	Х	Х	Х						
19.6	T70B-06498	T70B	Mngazi	All indicators. EWR site MNGA01_R	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х
19.7	T60C-05942	T60C	Mtentu	All indicators. EWR site MTEN01_R	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х	Х
19.8			Mzikaba	Selected according to the RU evaluation tool	Х	Х											

19.6: Mngazi

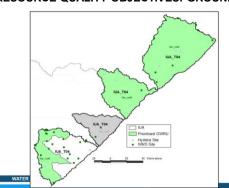
WATER IS LIFE - SANITATION IS DIGNITY

46

47

48

RESOURCE QUALITY OBJECTIVES: WETLANDS


Xolobeni Wetland

Туре	Component prioritised	Indicator	RQO	Narrative/Numerical Criteria
Channelled	Habitat – management of plantations/ wood lots	Extent of the plantations/wood lots in the wetland in relation to the extent recorded in the baseline assessment.	The plantation/wood lot extent should be managed to ensure it does not increase above the extent mapped in the baseline assessment.	The extent of plantations/secodols must be monitored and reviewed annually. This may be achieved by using available remote imagery to decumenthings the enter of these research. Should the extent of plantation forestly/secodols in the calchiment areas begond the welland or buffer need to be increased, these should be subject to appropriate planning and authorisation.
valley- bottom	Habitat - geomorpholo gy	Extent to which headcut erosion has advanced within the wetland.	The headout erosion within the wetland should not be allowed to progress any further upstream than where they were noted in the baseline assessment. It deally, rehabilitation interventions must be implemented as a matter of urgency to protect the pipeline, pump house and ownrall water resource.	It is escential that the headcut enricinal feature which has formed at the water pipeline and pump house in the Xidobew weeked at is stabilised. The further ringstand of the headcut will result in the loss of peatland through the desication of the wettand and thus threatening the communities water source. Rehabilisation interventions (should be reviewed in terms of maintenance requirements and ecological coloromes, including unintended negative outcomes, in accordance with WET-Rehabilisations (Volletter et al. 2019).

WATER IS LIFE - SANITATION IS DIGNITY

48

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

49

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

QUAT		GWuse (WARMS)	Strat OW areas	GW Dependency		Govt Control Areas	GW Quality - (EC)	Ecoretiance on GW (Baseflow)	Overall score (total 35)		Priority (1-3)	Upgrade
T60A		1	1	2	1	1	5	4	15	42.9	2	
T60B		1	5	2	1	1	5	4	19	54.3	1	
T60C		1	2	2	1	1	5	5	17	48.6	2	
T60D		1	2	2	1	1	5	5	17	48.6	2	
T60E	Ow_ru45	1	2	2	1	1	5	4	16	45.7	2	
T60F	OW JUNE	1	5	2	1	1	5	5	20	57.1	1	У
T60G		1	5	2	1	1	5	5	20	57.1	1	
TGDH		1	5	2	1	1	5	5	20	57.1	1	
T60J		1	5	2	1	1	5	5	20	57.1	1	У
T60K		1	5	2	1	1	4	5	19	54.3	1	у
T70A		1	4	2	1	1	5	4	18	51.4	1	
T708		1	5	2	1	1	3	4	17	48.6	1	у
T70C		1	5	2	1	1	5	4	19	54.3	1	у
T70E	Gw_ru46	1	1	2	1	1	5	4	15	42.9	2	
T70F		1	1	2	1	1	4	4	14	40.0	2	
T70G		1	1	2	1	1	4	4	14	40.0	2	
T70D		1	5	2	1	1	3	5	18	51.4	1	
T80A		1	2	2	1	1	4	4	15	42.9	2	
Tace	Gw ru47	1	2	2	1	1	5	4	16	45.7	2	
T80C	OW_(U4/	1	1	2	1	1	5	4	15	42.9	2	
T80D		1	2	2	1	1	5	4	16	45.7	2	
T90A		1	1	2	1	1	4	3	13	37.1	1	у
T90D	Gw. ru48	1	3	2	1	1	4	4	16	45.7	1	у
T90F	Ow_fulso	1	5	1	1	1	5	4	18	51.4	1	у
T90G		3	5	3	1	1	4	4	21	60.0	1	у
T90B		1	2	2	1	1	5	4	16	45.7	2	
T90C		1	1	2	1	1	5	4	15	42.9	2	
TROF		1	3	1	. 1	1	. 5	4	16	45.7	2	

50 5

RESOURCE QUALITY OBJECTIVES: GROUNDWATER

est i	Quarts	Component	NOO .	Indicated Measure.	Numeric Limit
w,ru45	1608 1600 1600			Abstraction rates - Monthly Water Balance	Q < Average recharge per hectare Q < numberselie yield determined by yield text
	T60E T60F T60G		For large abstractions, or stressed catchinests, increased level of assessment required; Deaktop, Rapid, Intermediate, Comprehensive.	Recharge estimate Reserve determination Delineation of smaller sub-regions	
	760 760K		Water Level in bornhale not to exceed (3) Medium to long term (1 to 5 years) water level transfe (based on drawdown) must show recovery	Groundwater levels at active monitoring boreholes, using Groundwater Monitoring Guidelines. Time series water levels - Monthly	Active monitoring site available: 3 No Peak dreadown in abstraction beneficial critical depth Regional peak groundwater drawdown < 13 m Regional LT groundwater drawdown < 75th percentile of 12 n
				Redius of influence (r) , $r = 1.5^{\circ}\sqrt{(1^{\circ}V_{s}^{2})}$, T =Transmissivity $(m^{2}(d), t$ =Time $(days)$, S =Storativity $L = (T^{\circ})/R$, T =Transmissivity $(m/2^{\circ}d)$, t =Groundwater Gradient, R >=Recharge (m/d)	Determine from yield test date r < L[m]
		Quality	Presence existing water quality. Medium to long term III to Spenicy water quality must not accosed 70th years writin of mountaining data quarte.	OCA. Three services maker equality: (Quarterly / Bit ennuel)	Active monthlying sits available: 25Ne Peak wealth readings monothering benefits lang time from 4.75th pre-centile lang time from 4.75th pre-centile lang time from 6.75th pre-c
			Protection zone from microbial pollution	Microtical radius (r), r = 2(0,28°T) + 53	r < L(m)
		Ecological		L = (T*)/R, T=Transmissivity(m2/d), i=Groundwater One-diant, R=Pachange(m2/d) Time series water levels = Monthly Abstractions rates = Honthly	Detarmine from yield text data r < L(m)

NEXT STEPS: Step: Agree RUs, RQOs & Step: Finalise and Gazette numerical limits with stakeholde Publish the class configurations and their associated RQOs in the Consequent Gazette Draft Gazette template: end-June 2025 Out for public review: September – October 2025 (60 days) Public meeting: August/September 2025 Minister to sign off Gazette WATER IS LIFE - SANITATION IS DIGNITY

52

THANK YOU!

Professional Service Provider: Stakeholder Engagement Specialist Ms Simlindile Mahlaba 076 177 4142 / 033 343 2229 Stakeholder.fish@groundtruth.co.za

Project Director Dr Mark Graham mark@groundtruth.co.za

Project Manager Mrs Kylie Farrell 0836864212 Kylie.farrell9@gmail.com

53

Department of Water and Sanitation: Project Manager Mr Lawrence Mulangaphma mulangaphumaL@dws.gov.za

Project Manager Ms Rendani Mudzanani mudzananiR@dws.gov.za

All study reports can be accessed from the DWS website: https://www.dws.gov.za/RDM/WRCS/

WATER IS LIFE - SANITATION IS DIGNITY